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ABSTRACT | The theory of network coding promises significant

benefits in network performance, especially in lossy networks

and in multicast and multipath scenarios. To realize these

benefits in practice, we need to understand how coding across

packets interacts with the acknowledgment (ACK)-based flow

control mechanism that forms a central part of today’s Internet

protocols such as transmission control protocol (TCP). Current

approaches such as rateless codes and batch-based coding are

not compatible with TCP’s retransmission and sliding-window

mechanisms. In this paper, we propose a new mechanism

called TCP/NC that incorporates network coding into TCP with

only minor changes to the protocol stack, thereby allowing

incremental deployment. In our scheme, the source transmits

random linear combinations of packets currently in the con-

gestion window. At the heart of our scheme is a new interpre-

tation of ACKsVthe sink acknowledges every degree of

freedom (i.e., a linear combination that reveals one unit of

new information) even if it does not reveal an original packet

immediately. Thus, our new TCP ACK rule takes into account

the network coding operations in the lower layer and enables a

TCP-compatible sliding-window approach to network coding.

Coding essentially masks losses from the congestion control

algorithm and allows TCP/NC to react smoothly to losses, re-

sulting in a novel and effective approach for congestion control

over lossy networks such as wireless networks. An important

feature of our solution is that it allows intermediate nodes to

perform re-encoding of packets, which is known to provide

significant throughput gains in lossy networks and multicast

scenarios. Simulations show that our scheme, with or without

re-encoding inside the network, achieves much higher

throughput compared to TCP over lossy wireless links. We pre-

sent a real-world implementation of this protocol that ad-

dresses the practical aspects of incorporating network coding

and decoding with TCP’s window management mechanism. We

work with TCP-Reno, which is a widespread and practical

variant of TCP. Our implementation significantly advances the

goal of designing a deployable, general, TCP-compatible proto-

col that provides the benefits of network coding.

KEYWORDS | Congestion control; network coding; TCP; wireless

networks

I . INTRODUCTION

The concept of coding across data has been put to exten-
sive use in today’s communication systems at the link level,

due to practical coding schemes that are known to achieve

data rates very close to the fundamental limit, or capacity,

of the additive white Gaussian noise channel [1]. Although

the fundamental limits for many multiuser information

theory problems have yet to be established, it is well

known that there are significant benefits to coding beyond

the link level.
For example, consider multicasting over a network of

broadcast-mode links in wireless systems. Due to the

broadcast nature of the medium, a transmitted packet is
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likely to be received by several nodes. If one of the nodes
experienced a bad channel state and thereby lost the pa-

cket, then a simple retransmission strategy may not be the

best option, since the retransmission is useless from the

viewpoint of the other receivers that have already received

the packet. In Fig. 1, node A broadcasts 2 packets to

nodes B and C. In the first time-slot, only node B receives

packet p1 and in the second slot, only node C receives

packet p2. At this point, if instead of retransmitting p1 or
p2, node A is allowed to mix the information and send a

single packet containing the bitwise xor of p1 and p2,

then both B and C receive their missing packet in just one

additional time slot. This example shows that if we allow

coding across packets, it is possible to convey new infor-

mation simultaneously to all connected receivers.

Another scenario where coding across packets can

make a significant difference is in certain network topolo-
gies where multiple flows have to traverse a bottleneck

link. The now standard example is the butterfly network

from [2], which is shown in Fig. 2. Here, node A wants to

multicast a stream of packets to nodes F and G. Assume the

links are error free with a capacity of one packet per slot. If

all nodes are only allowed to forward packets, then node D

can forward either the packet from B ðp1Þ or the one from

C ðp2Þ. It can be seen that alternating between these
options gives a multicast throughput of 1.5 packets per slot.

However, if node D sends a bitwise xor of p1 and p2 as
shown in the figure, then it is possible to satisfy both re-

ceivers simultaneously, resulting in a multicast throughput

of two packets per time slot. This is the highest possible,

since it meets the min-cut bound for each receiver.

Through the butterfly network example, Ahlswede et al.
[2] introduced the field of network coding. With network

coding, a node inside the network, instead of simply for-

warding the incoming packets onto outgoing links, is now
allowed to send a coded version of the incoming packets.

Although both the examples above use a bitwise xor

code, the coding operation could be much more general.

For instance, we could view groups of bits as elements of a

finite field, and a packet as a vector over this field. Coding

could then correspond to performing linear combinations

of these vectors, with coefficients chosen from the field of

operation. In order to decode, the receiver will have to
collect as many linear combinations as the number of

packets that were mixed in, and then solve the resulting

system of linear equations by Gauss–Jordan elimination.

Network coding achieves the min-cut bound for multi-

cast in any network as long as all the multicast sessions

have the same destination set [2], [3]. Li et al. [4] showed

that linear coding suffices for this purpose. An algebraic

framework for network coding was proposed by Koetter
and Médard in [3]. Ho et al. [5] presented a random linear

network coding approach for this problem that is easy to

implement and does not compromise on throughput. The

problem of multicast using network coding with a cost

criterion has been studied, and distributed algorithms have

been proposed to solve this problem [6], [7]. Network

coding also readily extends to networks with broadcast-

mode links or lossy links [8]–[10]. Jiang et al. [11] high-
lights the need for coding for the case of multicast traffic,

even if feedback is present. In all these situations, coding is

indispensable from a throughput perspective.

Besides improving throughput, network coding can

also be used to simplify network management. The work

by Bhadra and Shakkottai [12] proposed a scheme for large

multihop networks, where intermediate nodes in the net-

work have no queues. Only the source and destination
nodes maintain buffers to store packets. The packet losses

that occur due to the absence of buffers inside the

network are compensated for by random linear coding

across packets at the source.

Network coding has emerged as an important potential

approach to the operation of communication networks,

especially wireless networks. The major benefit of network

coding stems from its ability to mix data, across time and
across flows. This makes data transmission over lossy

wireless networks robust and effective. There has been a

rapid growth in the theory and potential applications of

network coding. These developments have been summa-

rized in several survey papers and books such as [13].

However, extending coding technologies to the

network setting in a practical way has been a challenging

Fig. 1. Coding over a broadcast-mode link.

Fig. 2. The butterfly network of [2].
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task. Indeed, the most common way to implement a mul-
ticast connection today is to initiate multiple unicast con-

nections, one for each receiver, even though coding can

theoretically dramatically improve multicast performance.

To a large extent, this theory has not yet been imple-

mented in practical systems.

II . BRINGING NETWORK CODING
TO PRACTICE

Despite the potential of network coding, we still seem far

from seeing widespread implementation of network cod-

ing across networks. We believe a major reason for this is

the incremental deployment problem. It is not clear how to

naturally add network coding to existing systems, and to

understand ahead of time the actual effects of network

coding in the wild. There have been several important
advances in bridging the gap between theory and practice

in this space. The distributed random linear coding idea,

introduced by Ho et al. [14], is a significant step towards a

robust implementation. The work by Chou et al. [15] put

forth the idea of embedding the coefficients used in the

linear combination in the packet header, and also the no-

tion of grouping packets into batches for coding together.

The work by Katti et al. [16] used the idea of local oppor-
tunistic coding to present a practical implementation of a

network coded system for unicast. The use of network

coding in combination with opportunistic routing was pre-

sented in [17]. Despite these efforts, we believe that incre-

mental deployment remains a hurdle to increased adoption

of network coding in practical settings, and we therefore

seek a protocol that brings out the benefits of network

coding while requiring very little change in the existing
protocol stack.

A. The Incremental Deployment Problem
A common and important feature of today’s protocols is

the use of feedback in the form of acknowledgments

(ACKs). The simplest protocol that makes use of ACKs is

the Automatic Repeat reQuest (ARQ) protocol. It uses the

idea that the sender can interpret the absence of an ACK to
indicate the erasure of the corresponding packet within

the network, and in this case, the sender simply retrans-

mits the lost packet. Thus, ARQ ensures reliability. The

ARQ scheme can be generalized to situations that have

imperfections in the feedback link, in the form of either

losses or delay in the ACKs. Bertsekas and Gallager [18]

presented a summary of various protocols based on ARQ.

Besides ensuring reliability, the ACK mechanism forms
the basis of control algorithms in the network aimed at

preventing congestion and ensuring fair use of the

network resources. Compared to a point-to-point setting

where reliability is the main concern, the network setting

leads to several new control problems just to ensure that

the network is up and running and that all users get fair

access to the resources. These problems are usually tackled

using feedback. Therefore, in order to realize the theo-
retically proven benefits of network coding, we have to

find a way to incorporate coding into the existing network

protocols, without disrupting the feedback-based control
operations.

Flow control and congestion control in today’s Internet

are predominantly based on the transmission control pro-

tocol (TCP), which works using the idea of a sliding trans-

mission window of packets, whose size is controlled based
on feedback [19], [20]. The TCP paradigm has clearly

proven successful. We therefore see a need to find a

sliding-window approach for network coding that is as

similar as possible to TCP, that makes use of ACKs for flow

and congestion control. (This problem was initially

proposed in [21].)

B. Current Approaches Are Not TCP Compatible
Current approaches that use coding across packets are

not readily compatible with TCP’s retransmission and

sliding-window mechanism. The digital fountain codes

[22]–[24] constitute a well-known solution to the problem

of packet transmission over lossy links. From a batch of k
packets, the sender generates a stream of random linear

combinations in such a way that the receiver can, with high

probability, decode the batch once it receives any set of
slightly more than k linear combinations. Fountain codes

have a low complexity and do not use feedback, except to

signal successful decoding of the block. In contrast to

fountain codes that are typically applied end-to-end, the

random linear network coding solution of [5] and [9] al-

lows an intermediate node to easily re-encode the packets

and generate new linear combinations without having to

decode the original packets.
An important problem with both these approaches is

that although they are rateless, the encoding operation is

typically performed on a batch of packets. Several other

works also focus on such a batch-based solution [15], [17],

[25], [26]. With a batch-based approach, there is no gua-

rantee that the receiver will be able to extract and pass on to

higher layers any of the original packets until the entire

batch has been received and decoded. Therefore, packets
are acknowledged only at the end of a batch. This leads to a

decoding delay that interferes with TCP’s own retransmis-

sion mechanism for correcting losses. TCP would either

timeout, or learn a very large value of round- trip time

(RTT), causing low throughput. Thus, TCP cannot readily

run on a batch-based rateless coding module.

Lacan and Lochin [27] proposed an on-the-fly coding

scheme with ACKs, but there again, the packets are
acknowledged only upon decoding. Chen et al. [28] pro-

posed distributed rate control algorithms for network cod-

ing in a utility maximization framework, and pointed out

its similarity to TCP. However, to implement such algo-

rithms in practice, we need to create a clean interface

between network coding and TCP. Thus, none of these

works allows an ACK-based sliding-window network
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coding approach that is compatible with TCP. This is the
problem we address in our current work.

C. Our Solution
In this paper, we show how to incorporate network

coding into TCP, allowing its use with minimal changes to

the protocol stack, and in such a way that incremental

deployment is possible.

The main idea behind TCP is to use ACKs of newly
received packets as they arrive in correct sequence order in

order to guarantee reliable transport and also as a feedback

signal for the congestion control loop. This mechanism

requires some modification for systems using network

coding. The key difference to be dealt with is that under

network coding the receiver does not obtain original pa-

ckets of the message, but linear combinations of the pa-

ckets that are then decoded to obtain the original message
once enough such combinations have arrived. Hence, the

notion of an ordered sequence of packets as used by TCP is

missing, and further, a linear combination may bring in

new information to a receiver even though it may not

reveal an original packet immediately. The current ACK

mechanism does not allow the receiver to acknowledge a

packet before it has been decoded. For network coding, we

need a modification of the standard TCP mechanism that
acknowledges every unit of information received. A new

unit of information corresponds mathematically to a degree
of freedom; essentially, once n degrees of freedom have

been obtained, a message that would have required n un-

encoded packets can be decoded. We present a mechanism

that performs the functions of TCP, namely reliable trans-

port and congestion control, based on acknowledging

every degree of freedom received, whether or not it reveals
a new packet.

Our solution, known as TCP/NC, introduces a new

network coding layer between the transport layer and

the network layer of the protocol stack. Thus, we recycle

the congestion control principle of TCP, namely that the

number of packets involved in transmissions cannot ex-

ceed the number of ACKs received by more than the con-

gestion window size. However, we introduce two main
changes. First, whenever the source is allowed to transmit,

it sends a random linear combination of all packets in the

congestion window. Second, the receiver acknowledges

degrees of freedom and not original packets. (This idea was

previously introduced in [29] in the context of a single-hop

erasure broadcast link.) An appropriate interpretation of

the degree of freedom allows us to order the receiver

degrees of freedom in a manner consistent with the packet
order of the source. This lets us utilize the standard TCP

protocol with the minimal change. Since the receiver does

not have to wait to decode a packet, but can send a TCP

ACK for every degree of freedom received, the problems of

using batchwise ACKs is eliminated.

We use the TCP-Vegas protocol in the initial de-

scription, as it is more compatible with our modifications.

In a later part of the paper, we also demonstrate the
compatibility of our protocol with the more commonly

used TCP-Reno. We do not consider bidirectional TCP in

this work.

It is important to note that the introduction of the new

network coding layer does not cause any change in the

interface to TCP, as seen by an application. Moreover, the

interface seen by TCP looking downwards in the protocol

stack is also unchangedVthe network coding layer
accepts regular TCP packets from the TCP sender and

delivers regular TCP ACKs back to the sender. Similarly, it

delivers regular TCP packets to the receiver and accepts

the ACKs generated by the receiver. This means that the

basic features of the TCP layer implementation do not

need to be changed. Further details about this interface

are discussed in Section V-C5.

The first part of the paper explains the details of our
new protocol along with its theoretical basis and a queuing

analysis in an idealized setting. Following this, we present

a real-life implementation of the protocol and discuss the

practical issues that need to be addressed. Finally, we

analyze the algorithm’s performance based on simulations

as well as real-world experiments.

III . PRELIMINARIES

Consider a single source that has a message to transmit.

We view the message as being split into a stream of packets

p1;p2; . . .. The kth packet in the source message is said to

have an index k. We treat a packet as a vector over a finite
field Fq of size q, by grouping the bits of the packet into

groups of size blog2 qc bits each. In the system we propose,

a node, in addition to forwarding incoming packets, is also

allowed to perform linear network coding. This means that

the node may transmit a packet obtained by linearly com-

bining the vectors corresponding to the incoming packets,

with coefficients chosen from the field Fq. For example, it

may transmit q1 ¼ �p1 þ �p2 and q2 ¼ �p1 þ �p2,
where �; �; �; � 2 Fq. Assuming the packets have ‘
symbols, the encoding process may be written in matrix

form as

q11 q12 . . . q1‘

q21 q22 . . . q2‘

� �
¼ C � p11 p12 . . . p1‘

p21 p22 . . . p2‘

� �

where C ¼ � �
� �

� �
is called the coefficient matrix. Note

that even if an intermediate node performs re-encoding on
these linear combinations, the net effect may still be re-

presented using such a linear relation, with C being

replaced by the overall transfer matrix.

Upon receiving the packets q1 and q2, the receiver

simply needs to invert the matrix C using Gauss–Jordan

elimination, and apply the corresponding linear operations

on the received packets to obtain the original message
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packets p1 and p2. In matrix form, the decoding process is
given by

p11 p12 . . . p1‘

p21 p22 . . . p2‘

� �
¼ C�1 � q11 q12 . . . q1‘

q21 q22 . . . q2‘

� �
:

In general, the receiver will need to receive as many linear
combinations as the number of original packets involved,

in order to be able to decode.

In this setting, we introduce some definitions that will

be useful throughout the paper (see [29] for more details).

Definition 1 (Seeing a Packet): A node is said to have seen
a packet pk if it has enough information to compute a

linear combination of the form ðpk þ qÞ, where q ¼P
‘> k �‘p‘, with �‘ 2 Fq for all ‘ > k. Thus, q is a linear

combination involving packets with indices larger than k.

The notion of Bseeing[ a packet is a natural extension

of the notion of Bdecoding[ a packet, or more specifically,

receiving a packet in the context of classical TCP. For

example, if a packet pk is decoded then it is indeed also

seen, with q ¼ 0. A node can compute any linear combi-

nation whose coefficient vector is in the span of the
coefficient vectors of previously received linear combina-

tions. This leads to the following definition.

Definition 2 (Knowledge of a Node): The knowledge of a
node is the set of all linear combinations of original packets

that it can compute, based on the information it has re-

ceived so far. The coefficient vectors of these linear com-

binations form a vector space called the knowledge space of
the node.

We state a useful proposition without proof (see [29,

Corollary 1] for details).

Proposition 1: If a node has seen packet pk, then it

knows exactly one linear combination of the form pk þ q
such that q is itself a linear combination involving only

unseen packets.
The above proposition inspires the following definition.

Definition 3 (Witness): We call the unique linear com-

bination guaranteed by Proposition 1 the witness for
seeing pk.

A compact representation of the knowledge space is the

basis matrix. This is a matrix in reduced row echelon form

(RREF) such that its rows form a basis of the knowledge
space. It is obtained by performing Gauss–Jordan elimi-

nation on the coefficient matrix. Fig. 3 explains the notion

of a seen packet in terms of the basis matrix. Essentially,

the seen packets are the ones that correspond to the pivot

columns of the basis matrix. Given a seen packet, the

corresponding pivot row gives the coefficient vector for the

witness linear combination. An important observation is

that the number of seen packets is always equal to the
dimension of the knowledge space, or the number of degrees

of freedom that have been received so far. A newly

received linear combination that increases the dimension

is said to be innovative. We assume throughout the paper
that the field size is very large. As a consequence, each

reception will be innovative with high probability, and will

cause the next unseen packet to be seen (see Lemma 1).

Example: Suppose a node knows the following linear

combinations: x ¼ ðp1 þ p2Þ and y ¼ ðp1 þ p3Þ. Since

these are linearly independent, the knowledge space has a

dimension of 2. Hence, the number of seen packets must
be 2. It is clear that packet p1 has been seen, since x
satisfies the requirement of Definition 1. Now, the node

can compute z ¼� x� y ¼ ðp2 � p3Þ. Thus, it has also

seen p2. That means p3 is unseen. Hence, y is the witness

for p1, and z is the witness for p2.

IV. THE NEW PROTOCOL

In this section, we present the logical description of our

new protocol, followed by a way to implement these ideas

with as little disturbance as possible to the existing
protocol stack.

A. Logical Description
The main aim of our algorithm is to mask losses from

TCP using random linear coding. We make some impor-

tant modifications in order to incorporate coding. First,

instead of the original packets, we transmit random linear
combinations of packets in the congestion window. While

such coding helps with erasure correction, it also leads to a

problem in acknowledging data. TCP operates with units

of packets,1 which have a well-defined ordering. Thus, the

Fig. 3. Seen packets and witnesses in terms of the basis matrix.

1Actually, TCP operates in terms of bytes. For simplicity of
presentation, the present section uses packets of fixed length as the basic
unit. All the discussion in this section extends to the case of bytes as well,
as explained in Section V.
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packet sequence number can be used for acknowledging
the received data. The unit in our protocol is a degree of

freedom. However, when packets are coded together,

there is no clear ordering of the degrees of freedom that

can be used for ACKs. Our main contribution is the solu-

tion to this problem. The notion of seen packets defines an

ordering of the degrees of freedom that is consistent with

the packet sequence numbers, and can therefore be used to

acknowledge degrees of freedom.
Upon receiving a linear combination, the sink finds out

which packet, if any, has been newly seen because of the

new arrival and acknowledges that packet. The sink thus

pretends to have received the packet even if it cannot be

decoded yet. We will show in Section IV-C that at the end

this is not a problem because if all the packets in a file have

been seen, then they can all be decoded as well.

The idea of transmitting random linear combinations
and acknowledging seen packets achieves our goal of mask-

ing losses from TCP as follows. As mentioned in Section III,

with a large field size, every random linear combination is

very likely to cause the next unseen packet to be seen.

Hence, even if a transmitted linear combination is lost,

the next successful reception of a (possibly) different

random linear combination will cause the next unseen

packet to be seen and acknowledged. From the TCP
sender’s perspective, this appears as though the trans-

mitted packet waits in a fictitious queue until the channel

stops erasing packets and allows it through. Thus, there

will never be any duplicate ACKs. Every ACK will cause

the congestion window to advance. In short, the lossiness
of the link is presented to TCP as an additional queuing delay
that leads to a larger effective RTT. The term RTT thus has

a new interpretation. It is the effective time the network
takes to reliably deliver a degree of freedom (including the

delay for the coded redundancy, if necessary), followed by

the return of the ACK. This is larger than the true

network delay it takes for a lossless transmission and the

return of the ACK. The more lossy the link is, the larger

will be the effective RTT. Presenting TCP with a larger

value for RTT may seem counterintuitive as TCP’s rate is

inversely related to RTT. However, if done correctly, it
improves the rate by preventing loss-induced window

closing, as it gives the network more time to deliver the

data in spite of losses, before TCP times out. Therefore,

losses are effectively masked.

The natural question that arises is: How does this affect

congestion control? Since we mask losses from the con-

gestion control algorithm, the TCP-Reno style approach to

congestion control using packet loss as a congestion indi-
cator is not immediately applicable to this situation. How-

ever, the congestion related losses are made to appear as a

longer RTT. Therefore, we can use an approach that infers

congestion from an increase in RTT. The natural choice is

TCP-Vegas. The discussion in this section is presented in

terms of TCP-Vegas. The algorithm, however, can be ex-

tended to make it compatible with TCP-Reno as well. This

is discussed in detail in Section V, where a real-world
implementation with TCP-Reno is presented.

TCP-Vegas uses a proactive approach to congestion

control by inferring the size of the network buffers even

before they start dropping packets. The crux of the

algorithm is to estimate the RTT and use this information

to find the discrepancy between the expected and actual

transmission rate. As congestion arises, buffers start to fill

up and the RTT starts to rise, and this is used as the
congestion signal. This signal is used to adjust the

congestion window and hence the rate. For further details,

the reader is referred to [30].

In order to use TCP-Vegas correctly in this setting, we

need to ensure that it uses the effective RTT of a degree of

freedom, including the fictitious queuing delay. In other

words, the RTT should be measured from the point when a

packet is first sent out from TCP, to the point when the
ACK returns saying that this packet has been seen. This is

indeed the case if we simply use the default RTT

measurement mechanism of TCP-Vegas. The TCP sender

notes down the transmission time of every packet. When

an ACK arrives, it is matched to the corresponding

transmit timestamp in order to compute the RTT. Thus, no

modification is required.

Consider the example shown in Fig. 4. Suppose the
congestion window’s length is 4. Assume TCP sends

four packets to the network coding layer at t ¼ 0. All

four transmissions are linear combinations of these four

packets. The first transmission causes the first packet to be

seen. The second and third transmissions are lost, and the

fourth transmission causes the second packet to be seen

(the discrepancy is because of losses). As far as the RTT

estimation is concerned, transmissions 2, 3, and 4 are
treated as attempts to convey the second degree of free-

dom. The RTT for the second packet must include the final

Fig. 4. Example of coding and ACKs.

Sundararajan et al. : Network Coding Meets TCP: Theory and Implementation

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 495



attempt that successfully delivers the second degree of

freedom, namely the fourth transmission. In other words,

the RTT is the time from t ¼ 0 until the time of reception
of ACK ¼ 3.

B. Implementation Strategy
The implementation of all these ideas in the existing

protocol stack needs to be done in as nonintrusive a

manner as possible. We present a solution that embeds the

network coding operations in a separate layer below TCP

and above IP on the source and receiver side, as shown in
Fig. 5. The exact operation of these modules is described

next.

The sender module accepts packets from the TCP

source and buffers them into an encoding buffer which

represents the coding window,2 until they are acknowl-

edged by the receiver. The sender then generates and

sends random linear combinations of the packets in the

coding window. The coefficients used in the linear
combination are also conveyed in the header.

For every packet that arrives from TCP, R linear com-

binations are sent to the IP layer on average, where R is the

redundancy parameter. The average rate at which linear

combinations are sent into the network is thus a constant

factor more than the rate at which TCP’s congestion

window progresses. This is necessary in order to compen-

sate for the loss rate of the channel and to match TCP’s
sending rate to the rate at which data are actually sent to

the receiver. If there is too little redundancy, then the data

rate reaching the receiver will not match the sending rate

because of the losses. This leads to a situation where the

losses are not effectively masked from the TCP layer.
Hence, there are frequent timeouts leading to a low

throughput. On the other extreme, too much redundancy

is also bad, since then the transmission rate becomes

limited by the rate of the code itself. Besides, sending too

many linear combinations can congest the network. The

ideal level of redundancy is to keep R equal to the reci-

procal of the probability of successful reception. Thus, in

practice, the value of R should be dynamically adjusted by
estimating the loss rate, possibly using the RTT estimates.

Upon receiving a linear combination, the receiver

module first retrieves the coding coefficients from the

header and appends it to the basis matrix of its knowledge

space. Then, it performs a Gauss–Jordan elimination to

find out which packet is newly seen so that this packet can

be acknowledged. The receiver module also maintains a

buffer of linear combinations of packets that have not been
decoded yet. Upon decoding the packets, the receiver

module delivers them to the TCP sink.

The algorithm is specified below using pseudocode.

This specification assumes a one-way TCP flow.

1) Source Side: The source side algorithm has to respond

to two types of events: the arrival of a packet from the source

TCP and the arrival of an ACK from the receiver via IP.

1) Set NUM to 0.

2) Wait state: If any of the following events occurs,

respond as follows; else, wait.

3) Packet arrives from TCP sender.

a) If the packet is a control packet used for
connection management, deliver it to the IP

layer and return to wait state.

b) If the packet is not already in the coding

window, add it to the coding window.

c) Set NUM¼NUMþR (R ¼ redundancy fac-

tor).

d) Repeat the following bNUMc times.

i) Generate a random linear combination
of the packets in the coding window.

ii) Add the network coding header specify-

ing the set of packets in the coding

window and the coefficients used for the

random linear combination.

iii) Deliver the packet to the IP layer.

e) Set NUM: ¼ fractional part of NUM.

f) Return to the wait state.
4) ACK arrives from receiver: Remove the acknowl-

edged packet from the coding buffer and hand

over the ACK to the TCP sender.

2) Receiver Side: On the receiver side, the algorithm

again has to respond to two types of events: the arrival of a

Fig. 5. New network coding layer in the protocol stack.

2Whenever a new packet enters the TCP congestion window, TCP
transmits it to the network coding module, which then adds it to the
coding window. Thus, the coding window is related to the TCP layer’s
congestion window but generally not identical to it. For example, the
coding window will still hold packets that were transmitted earlier by
TCP, but are no longer in the congestion window because of a reduction of
the window size by TCP. However, this is not a problem because involving
more packets in the linear combination will only increase its chances of
being innovative.
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packet from the source and the arrival of ACKs from the
TCP sink.

1) Wait state: If any of the following events occurs,

respond as follows; else, wait.

2) ACK arrives from TCP sink: If the ACK is a control

packet for connection management, deliver it to

the IP layer and return to the wait state; else,

ignore the ACK.
3) Packet arrives from source side.

a) Remove the network coding header and

retrieve the coding vector.

b) Add the coding vector as a new row to the

existing coding coefficient matrix, and per-

form Gauss–Jordan elimination to update the

set of seen packets.

c) Add the payload to the decoding buffer.
Perform the operations corresponding to the

Gauss–Jordan elimination, on the buffer

contents. If any packet gets decoded in the

process, deliver it to the TCP sink and

remove it from the buffer.

d) Generate a new TCP ACK with sequence

number equal to that of the oldest unseen

packet.

C. Soundness of the Protocol
We argue that our protocol guarantees reliable transfer

of information. In other words, every packet in the packet

stream generated by the application at the source will be

delivered eventually to the application at the sink. We
observe that the ACK mechanism ensures that the coding

module at the sender does not remove a packet from the

coding window unless it has been acknowledged, i.e.,

unless it has been seen by the sink. Thus, we only need to

argue that if all packets in a file have been seen, then the

file can be decoded at the sink.

Theorem 1: From a file of n packets, if every packet has
been seen, then every packet can also be decoded.

Proof: If the sender knows a file of n packets, then

the sender’s knowledge space is of dimension n. Every seen

packet corresponds to a new dimension. Hence, if all n
packets have been seen, then the receiver’s knowledge

space is also of dimension n, in which case it must be the

same as the sender’s and all packets can be decoded. h
In other words, seeing n different packets corresponds

to having n linearly independent equations in n unknowns.

Hence, the unknowns can be found by solving the system

of equations. At this point, the file can be delivered to the

TCP sink. In practice, one does not have to necessarily

wait until the end of the file to decode all packets. Some of

the unknowns can be found even along the way. In

particular, whenever the number of equations received

catches up with the number of unknowns involved, the
unknowns can be found. Now, for every new equation

received, the receiver sends an ACK. The congestion

control algorithm uses the ACKs to control the injection of

new unknowns into the coding window. Thus, the dis-

crepancy between the number of equations and number

of unknowns does not tend to grow with time, and there-

fore will hit zero often based on the channel conditions.

As a consequence, the decoding buffer will tend to be
stable.

An interesting observation is that the arguments used to

show the soundness of our approach are quite general and

can be extended to more general scenarios such as random

linear coding based multicast over arbitrary topologies.

D. Queuing Analysis for an Idealized Case
In this section, we focus on an idealized scenario in

order to provide a first-order analysis of our new protocol.

We aim to explain the key ideas of our protocol with em-

phasis on the interaction between the coding operation

and the feedback. The model used in this section will also

serve as a platform that we can build on to incorporate

more practical situations.

We abstract out the congestion control aspect of the

problem by assuming that the capacity of the system is
fixed in time and known at the source, and hence the

arrival rate is always maintained below the capacity. We

also assume that nodes have infinite capacity buffers to

store packets. We focus on a topology that consists of a

chain of erasure-prone links in tandem, with perfect end-

to-end feedback from the sink directly to the source. In

such a system, we investigate the behavior of the queue

sizes at various nodes. We show that our scheme stabilizes
the queues for all rates below capacity.

1) System Model: The network we study in this section is

a daisy chain of N nodes, each node being connected to the

next one by a packet erasure channel. We assume a slotted

time system. The source generates packets according to a

Bernoulli process of rate � packets per slot. The point of

transmission is at the very beginning of a slot. Just after
this point, every node transmits one random linear combi-

nation of the packets in its queue. The relation between

the transmitted linear combination and the original packet

stream is conveyed in the packet header. We ignore this

overhead for the analysis in this section. We ignore propa-

gation delay. Thus, the transmission, if not erased by the

channel, reaches the next node in the chain almost imme-

diately. However, the node may use the newly received
packet only in the next slot’s transmission. We assume

perfect, delay-free feedback from the sink to the source. In

every slot, the sink generates the feedback signal after the

instant of reception of the previous node’s transmission.

The erasure event happens with a probability ð1� �iÞ on

the channel connecting node i and ðiþ 1Þ, and is assumed

to be independent across different channels and over time.
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Thus, the system has a capacity mini �i packets per slot.
We assume that � G mini �i, and define the load factor

�i ¼ �=�i.

2) Queue Update Mechanism: Each node transmits a

random linear combination of the current contents of its

queue and hence, it is important to specify how the queue

contents are updated at the different nodes. Queue updates

at the source are relatively simple because in every slot, the
sink is assumed to send an ACK directly to the source,

containing the index of the oldest packet not yet seen by

the sink. Upon receiving the ACK, the source simply drops

all packets from its queue with an index lower than the

sink’s request.

Whenever an intermediate node receives an innovative

packet, this causes the node to see a previously unseen

packet. The node performs a Gauss–Jordan elimination to
compute the witness of the newly seen packet, and adds

this to the queue. Thus, intermediate nodes store the wit-

nesses of the packets that they have seen. The idea behind

the packet drop rule is similar to that at the sourceVan

intermediate node may drop the witnesses of packets up to

but excluding what it believes to be the sink’s first unseen

packet, based on its knowledge of the sink’s status at that

point of time.
However, the intermediate nodes, in general, may only

know an outdated version of the sink’s status because we

assume that the intermediate nodes do not have direct

feedback from the sink (see Fig. 6). Instead, the source has

to inform them about the sink’s ACK through the same

erasure channel used for the regular forward transmission.

This feed-forward of the sink’s status is modeled as follows.

Whenever the channel entering an intermediate node is in
the on state (i.e., no erasure), the node’s version of the

sink’s status is updated to that of the previous node. In

practice, the source need not transmit the sink’s status

explicitly. The intermediate nodes can infer it from the set

of packets that have been involved in the linear

combinationVif a packet is no longer involved, that

means the source must have dropped it, implying that the

sink must have acknowledged it already.

Remark 1: This model and the following analysis also

work for the case when not all intermediate nodes are

involved in the network coding. If some node simply

forwards the incoming packets, then we can incorporate

this in the following way. An erasure event on either the

link entering this node or the link leaving this node will

cause a packet erasure. Hence, these two links can be
replaced by a single link whose probability of being on is

simply the product of the on probabilities of the two links

being replaced. Thus, all noncoding nodes can be removed

from the model, which brings us back to the same situation

as in the above model.

4) Queuing Analysis: We now analyze the size of the

queues at the nodes under the queuing policy described
above. The following theorem shows that if we allow cod-

ing at intermediate nodes, then it is possible to achieve the

capacity of the network, namely mink �k. In addition, it

also shows that the expected queue size in the heavy-traffic

limit ð�! mink �kÞ has an asymptotically optimal linear

scaling in 1=ð1� �kÞ.
If we only allow forwarding at some of the intermediate

nodes, then we can still achieve the capacity of a new
network derived by collapsing the links across the

noncoding nodes, as described in Remark 1.

Theorem 2: As long as �G�k for all 1 � kGN, the

queues at all the nodes will be stable. The expected queue

size in steady state at node k ð1 � kGNÞ is given by

E½Qk� ¼
XN�1

i¼k

�ið1� �iÞ
ð1� �iÞ

þ
Xk�1

i¼1

�i:

An implication: Consider a case where all the �i’s are

equal to some �. Then, the above relation implies that in

the limit of heavy traffic, i.e., �! 1, the queues are

expected to be longer at nodes near the source than near
the sink.

A useful lemma: The above theorem will be proved after

the following lemma. The lemma shows that the random

linear coding scheme has the property that every success-

ful reception at a node causes the node to see the next

unseen packet with high probability, provided the field is

large enough. This fact will prove useful while analyzing

the evolution of the queues.

Lemma 1: Let SA and SB be the set of packets seen by two

nodes A and B, respectively. Assume SA n SB is nonempty.

Suppose A sends a random linear combination of its wit-

nesses of packets in SA and B receives it successfully. The

probability that this transmission causes B to see the oldest

packet in SA n SB is ð1� 1=qÞ, where q is the field size.

Proof: Let MA be the RREF basis matrix for A. Then,
the coefficient vector of the linear combination sent by A is

t ¼ uMA, where u is a vector of length jSAj whose entries

are independent and uniformly distributed over the finite

field Fq. Let d� denote the index of the oldest packet in

SA n SB.

Let MB be the RREF basis matrix for B before the new

reception. Suppose t is successfully received by B. Then, BFig. 6. Topology: Daisy chain with perfect end-to-end feedback.
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will append t as a new row to MB and perform Gauss–
Jordan elimination. The first step involves subtracting

from t, suitably scaled versions of the pivot rows such that

all entries of t corresponding to pivot columns of MB be-

come 0. We need to find the probability that after this step,

the leading nonzero entry occurs in column d�, which

corresponds to the event that B sees packet d�. Subsequent

steps in the Gauss–Jordan elimination will not affect this

event. Hence, we focus on the first step.
Let PB denote the set of indices of pivot columns of MB.

In the first step, the entry in column d� of t becomes

t0ðd�Þ ¼ tðd�Þ �
X

i2 PB;i G d�
tðiÞ �MB rBðiÞ; d�ð Þ

where rBðiÞ is the index of the pivot row corresponding to

pivot column i in MB. Now, due to the way RREF is de-

fined, tðd�Þ ¼ uðrAðd�ÞÞ, where rAðiÞ denotes the index of

the pivot row corresponding to pivot column i in MA. Thus,

tðd�Þ is uniformly distributed. Also, for iG d�, tðiÞ is a

function of only those uðjÞ’s such that j G rAðd�Þ. Hence,

tðd�Þ is independent of tðiÞ for iG d�. From these observa-
tions and the above expression for t0ðd�Þ, it follows that for

any given MA and MB, t0ðd�Þ has a uniform distribution over

Fq, and the probability that it is not zero is therefore

ð1� ð1=qÞÞ. h
Computing the expected queue size: For the queuing

analysis, we assume that a successful reception always

causes the receiver to see its next unseen packet, as long as

the transmitter has already seen it. The above lemma ar-
gues that this assumption becomes increasingly valid as the

field size increases. In reality, some packets may be seen

out of order, resulting in larger queue sizes. However, we

believe that this effect is minor and can be neglected for a

first-order analysis.

With this assumption in place, the queue update policy

described earlier implies that the size of the physical queue

at each node is simply the difference between the number
of packets the node has seen and the number of packets it

believes the sink has seen.

To study the queue size, we define a virtual queue at

each node that keeps track of the degrees of freedom back-

log between that node and the next one in the chain. The

arrival and the departure of the virtual queues are defined

as follows. A packet is said to arrive at a node’s virtual queue

when the node sees the packet for the first time. A packet is
said to depart from the virtual queue when the next node in

the chain sees the packet for the first time. A consequence

of the assumption stated above is that the set of packets

seen by a node is always a contiguous set. This allows us to

view the virtual queue maintained by a node as though it

were a first-in–first-out (FIFO) queue. The size of the vir-

tual queue is simply the difference between the number of

packets seen by the node and the number of packets seen by
the next node downstream.

We are now ready to prove Theorem 2. For each

intermediate node, we study the expected time spent by an

arbitrary packet in the physical queue at that node, as this

is related to the expected physical queue size at the node,

by Little’s law.

Proof of Theorem 2: Consider the kth node, for 1 � kGN.
The time a packet spends in this node’s queue has

two parts.

1) Time until the packet is seen by the sink: The virtual

queue at a node behaves like a FIFO Geom=Geom=1

queue. The Markov chain governing its evolution

is identical to that of the virtual queues studied in

[29]. Given that node k has just seen the packet in

question, the additional time it takes for the next
node to see that packet corresponds to the waiting

time in the virtual queue at node k. For a load

factor of � and a channel on probability of �, the

expected waiting time was derived in [29] to be

ð1� �Þ=�ð1� �Þ, using results from [31]. Now,

the expected time until the sink sees the packet is

the sum of ðN � kÞ such terms, which givesPN�1
i¼k ðð1� �iÞ=�ið1� �iÞÞ.

2) Time until sink’s ACK reaches intermediate node:

The ACK informs the source that the sink has seen

the packet. This information needs to reach node

k by the feed-forward mechanism. The expected

time for this information to move from node i to

node iþ 1 is the expected time until the next slot

when the channel is on, which is just 1=�i (since

the ith channel is on with probability �i). Thus,
the time it takes for the sink’s ACK to reach node k
is given by

Xk�1

i¼1

1

�i
:

The total expected time Tk a packet spends in the queue

at the kth node ð1 � kGNÞ can thus be computed by
adding the above two terms. Now, assuming the system is

stable (i.e., �G mini �i), we can use Little’s law to derive

the expected queue size at the kth node, by multiplying

Tk by �

E½Qk� ¼
XN�1

i¼k

�ið1� �iÞ
ð1� �iÞ

þ
Xk�1

i¼1

�i:

h
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V. REAL-WORLD IMPLEMENTATION

In this section, we discuss some of the practical issues that

arise in designing an implementation of the TCP/NC pro-
tocol compatible with real TCP/IP stacks. These issues

were not considered in the idealized setting discussed up

to this point. We present a real-world implementation of

TCP/NC and thereby show that it is possible to overcome

these issues and implement a TCP-aware network-coding

layer that has the property of a clean interface with TCP. In

addition, although our initial description used TCP-Vegas,

our real-world implementation demonstrates the com-
patibility of our protocol with the more commonly used

TCP variantVTCP-Reno. The rest of this section pertains

to TCP-Reno.

A. Sender Side Module

1) Forming the Coding Buffer: The description of the

protocol in Section IV assumes a fixed packet length,

which allows all coding and decoding operations to be

performed symbol-wise on the whole packet. That is, an

entire packet serves as the basic unit of data (i.e., as a

single unknown), with the implicit understanding that the

exact same operation is being performed on every symbol
within the packet. The main advantage of this view is that

the decoding matrix operations (i.e., Gauss–Jordan elim-

ination) can be performed at the granularity of packets

instead of individual symbols. Also, the ACKs are then able

to be represented in terms of packet numbers. Finally, the

coding vectors then have one coefficient for every packet,

not every symbol. Note that the same protocol and analysis

of Section IV holds even if we fix the basic unit of data as a
symbol instead of a packet. The problem is that the com-

plexity will be very high as the size of the coding matrix

will be related to the number of symbols in the coding

buffer, which is much more than the number of packets

(typically, a symbol is one byte long).

In practice, TCP is a byte-stream oriented protocol in

which ACKs are in terms of byte sequence numbers. If all

packets are of fixed length, we can still apply the packet-
level approach, since we have a clear and consistent map

between packet sequence numbers and byte sequence

numbers. In reality, however, TCP might generate seg-

ments of different sizes. The choice of how many bytes to

group into a segment is usually made based on the maxi-

mum transmission unit (MTU) of the network, which

could vary with time. A more common occurrence is that

applications may use the PUSH flag option asking TCP to
packetize the currently outstanding bytes into a segment,

even if it does not form a segment of the maximum allowed

size. In short, it is important to ensure that our protocol

works correctly in spite of variable packet sizes.

A closely related problem is that of repacketization.

Repacketization, as described in [19, Ch. 21], refers to

the situation where a set of bytes that were assigned to

two different segments earlier by TCP may later be re-
assigned to the same segment during retransmission. As a

result, the grouping of bytes into packets may not be

fixed over time.

Both variable packet lengths and repacketization need

to be addressed when implementing the coding protocol.

To solve the first problem, if we have packets of different

lengths, we could elongate the shorter packets by append-

ing sufficiently many dummy zero symbols until all packets
have the same length. This will work correctly as long as

the receiver is somehow informed how many zeros were

appended to each packet. While transmitting these extra

dummy symbols will decrease the throughput, generally

this loss will not be significant, as packet lengths are

usually consistent.

However, if we have repacketization, then we have

another problem, namely it is no longer possible to view a
packet as a single unknown. This is because we would not

have a one-to-one mapping between packets sequence

numbers and byte sequence numbers; the same bytes may

now occur in more than one packet. Repacketization ap-

pears to destroy the convenience of performing coding and

decoding at the packet level.

To counter these problems, we propose the following

solution. The coding operation described in Section IV in-
volves the sender storing the packets generated by the TCP

source in a coding buffer. We preprocess any incoming TCP

segment before adding it to the coding buffer as follows.

1) First, any part of the incoming segment that is

already in the buffer is removed from the segment.

2) Next, a separate TCP packet is created out of each

remaining contiguous part of the segment.

3) The source and destination port information is
removed. It will be added later in the network

coding header.

4) The packets are appended with sufficiently many

dummy zero bytes, to make them as long as the

longest packet currently in the buffer.

Every resulting packet is then added to the buffer. This

processing ensures that the packets in the buffer will

correspond to disjoint and contiguous sets of bytes from
the byte stream, thereby restoring the one-to-one corre-

spondence between the packet numbers and the byte

sequence numbers. The reason the port information is

excluded from the coding is because port information is

necessary for the receiver to identify which TCP connec-

tion a coded packet corresponds to. Hence, the port infor-

mation should not be involved in the coding. We refer to

the remaining part of the header as the TCP subheader.
Upon decoding the packet, the receiver can identify the

dummy symbols using the Starti and Endi header fields in

the network coding header (described below). With these

fixes in place, we are ready to use the packet-level algo-

rithm of Section IV. All operations are performed on the

packets in the coding buffer. Fig. 7 shows a typical state of

the buffer after this preprocessing. The gaps at the end of
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the packets correspond to the appended zeros. It is im-

portant to note that the TCP control packets such as SYN

packet and reset packet are allowed to bypass the coding

buffer and are directly delivered to the receiver without

any coding.

2) The Coding Header: A coded packet is created by

forming a random linear combination of a subset of the

packets in the coding buffer. The coding operations are

done over a field of size 256 in our implementation. In this

case, a field symbol corresponds to one byte. The header of

a coded packet should contain information that the receiver

can use to identify what is the linear combination corre-
sponding to the packet. We now discuss the header struc-

ture in more detail.

We assume that the network coding header has the

structure shown in Fig. 8. The typical sizes (in bytes) of

the various fields are written above them. The meaning of

the various fields are described next.

• Source and destination port: The port information is

needed for the receiver to identify the coded pa-
cket’s session. It must not be included in the cod-

ing operation. It is taken out of the TCP header and
included in the network coding header.

• Base: The TCP byte sequence number of the first

byte that has not been acknowledged. The field is

used by intermediate nodes or the decoder to de-

cide which packets can be safely dropped from

their buffers without affecting reliability.

• n: The number of packets involved in the linear

combination.
• Starti: The starting byte of the ith packet involved

in the linear combination.

• Endi: The last byte of the ith packet involved in the

linear combination.

• �i: The coefficient used for the ith packet involved

in the linear combination.

The Starti (except Start1) and Endi are expressed rela-

tive to the previous packet’s End and Start, respectively, to
save header space. As shown in the figure, this header

format will add 5nþ 7 bytes of overhead for the network

coding header in addition to the TCP header, where n is

the number of packets involved in a linear combination.

(Note that the port information is not counted in this

overhead, since it has been removed from the TCP

header.) We believe it is possible to reduce this overhead

by further optimizing the header structure.

3) The Coding Window: In the theoretical version of the

algorithm, the sender transmits a random linear combina-

tion of all packets in the coding buffer. However, as noted

above, the size of the header scales with the number of

packets involved in the linear combination. Therefore,

mixing all packets currently in the buffer will lead to a

large coding header.
To solve this problem, we propose mixing only a

constant-sized subset of the packets chosen from within

the coding buffer. We call this subset the coding window.

The coding window evolves as follows. The algorithm uses

Fig. 8. The network coding header.

Fig. 7. The coding buffer.
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a fixed parameter for the maximum coding window size W .
The coding window contains the packet that arrived most

recently from TCP (which could be a retransmission), and

the ðW � 1Þ packets before it in sequence number, if pos-

sible. However, if some of the ðW � 1Þ preceding packets

have already been dropped, then the window is allowed to

extend beyond the most recently arrived packet until it

includes W packets.

Note that this limit on the coding window implies that
the code is now restricted in its power to correct erasures

and to combat reordering-related issues. The choice of W
will thus play an important role in the performance of the

scheme. The correct value for W will depend on the length

of burst errors that the channel is expected to produce.

Other factors to be considered while choosing W are dis-

cussed in Section V-C.

4) Buffer Management: A packet is removed from the

coding buffer if a TCP ACK has arrived requesting a byte

beyond the last byte of that packet. If a new TCP segment

arrives when the coding buffer is full, then the segment

with the newest set of bytes must be dropped. This may not

always be the newly arrived segment, for instance, in the

case of a TCP retransmission of a previously dropped

segment.

B. Receiver Side Module
The decoder module’s operations are outlined below.

The main data structure involved is the decoding matrix,

which stores the coefficient vectors corresponding to the

linear combinations currently in the decoding buffer.

1) Acknowledgment: The receiver side module stores the
incoming linear combination in the decoding buffer. Then

it unwraps the coding header and appends the new coeffi-

cient vector to the decoding matrix. Gauss–Jordan elimi-

nation is performed and the packet is dropped if it is not

innovative (i.e., if it is not linearly independent of pre-

viously received linear combinations). After Gauss–Jordan

elimination, the oldest unseen packet is identified. Instead

of acknowledging the packet number as in Section IV, the
decoder acknowledges the last seen packet by requesting
the byte sequence number of the first byte of the first unseen
packet, using a regular TCP ACK. Note that this could

happen before the packet is decoded and delivered to the

receiver TCP. The port and IP address information for

sending this ACK may be obtained from the SYN packet at

the beginning of the connection. Any ACKs generated by

the receiver TCP are not sent to the sender. They are
instead used to update the receive window field that is

used in the TCP ACKs generated by the decoder (see

subsection below). They are also used to keep track of

which bytes have been delivered, for buffer management.

2) Decoding and Delivery: The Gauss–Jordan elimination

operations are performed not only on the decoding

coefficient matrix, but correspondingly also on the coded
packets themselves. When a new packet is decoded, any

dummy zero symbols that were added by the encoder are

pruned using the coding header information. A new TCP

packet is created with the newly decoded data and the

appropriate TCP header fields and this is then delivered to

the receiver TCP.

3) Buffer Management: The decoding buffer needs to
store packets that have not yet been decoded and delivered

to the TCP receiver. Delivery can be confirmed using the

receiver TCP’s ACKs. In addition, the buffer also needs to

store those packets that have been delivered but have not

yet been dropped by the encoder from the coding buffer.

This is because, such packets may still be involved in

incoming linear combinations. The Base field in the coding

header addresses this issue. Base is the oldest byte in the
coding buffer. Therefore, the decoder can drop a packet if

its last byte is smaller than Base, and in addition, has been

delivered to and acknowledged by the receiver TCP.

Whenever a new linear combination arrives, the value of

Base is updated from the header, and any packets that can

be dropped are dropped.

The buffer management can be understood using Fig. 9.

It shows the receiver side windows in a typical situation. In
this case, Base is less than the last delivered byte. Hence,

some delivered packets have not yet been dropped. There

could also be a case where Base is beyond the last delivered

byte, possibly because nothing has been decoded in a while.

4) Modifying the Receive Window: The TCP receive

window header field is used by the receiver to inform the

sender how many bytes it can accept. Since the receiver
TCP’s ACKs are suppressed, the decoder must copy this

information in the ACKs that it sends to the sender. How-

ever, to ensure correctness, we may have to modify the

value of the TCP receive window based on the decoding

buffer size. The last acceptable byte should thus be the

minimum of the receiver TCP’s last acceptable byte and

the last byte that the decoding buffer can accommodate.

Note that while calculating the space left in the decoding
buffer, we can include the space occupied by data that has

Fig. 9. Receiver side window management.
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already been delivered to the receiver because such data
will get dropped when Base is updated. If window scaling

option is used by TCP, this needs to be noted from the SYN

packet, so that the modified value of the receive window

can be correctly reported. Ideally, we would like to choose

a large enough decoding buffer size so that the decoding

buffer would not be the bottleneck and this modification

would never be needed.

C. Discussion of the Practicalities

1) Redundancy Factor: The choice of redundancy factor

is based on the effective loss probability on the links. For a

loss rate of pe, with an infinite window W and using TCP-

Vegas, the theoretically optimal value of R is 1=ð1� peÞ.
The basic idea is that of the coded packets that are sent into

the network, only a fraction ð1� peÞ of them are delivered
on average. Hence, the value of R must be chosen so that in

spite of these losses, the receiver is able to collect linear

equations at the same rate as the rate at which the un-

known packets are mixed in them by the encoder. As dis-

cussed below, in practice, the value of R may depend on

the coding window size W . As W decreases, the erasure

correction capability of the code goes down. Hence, we

may need a larger R to compensate and ensure that the
losses are still masked from TCP. Another factor that

affects the choice of R is the use of TCP-Reno. The TCP-

Reno mechanism causes the transmission rate to fluctuate

around the link capacity, and this leads to some additional

losses over and above the link losses. Therefore, the opti-

mal choice of R may be higher than 1=ð1� peÞ.

2) Coding Window Size: There are several considerations
to keep in mind while choosing W , the coding window

size. The main idea behind coding is to mask the losses on

the channel from TCP. In other words, we wish to correct

losses without relying on the ACKs. Consider a case where

W is just 1. Then, this is a simple repetition code. Every

packet is repeated R times on average. Now, such a repeti-

tion would be useful only for recovering one packet, if it

was lost. Instead, if W was say 3, then every linear combi-
nation would be useful to recover any of the three packets

involved. Ideally, the linear combinations generated should

be able to correct the loss of any of the packets that have not

yet been acknowledged. For this, we need W to be large.

This may be difficult, since a large W would lead to a large

coding header. Another penalty of choosing a large value of

W is related to the interaction with TCP-Reno. This is

discussed in Section V-C3.
The penalty of keeping W small, on the other hand, is

that it reduces the error correction capability of the code.

For a loss probability of 10%, the theoretical value of R is

around 1.1. However, this assumes that all linear com-

binations are useful to correct any packet’s loss. The re-

striction on W means that a coded packet can be used only

for recovering those W packets that have been mixed to

form that coded packet. In particular, if there is a conti-
guous burst of losses that result in a situation where the

receiver has received no linear combination involving a

particular original packet, then that packet will show up as

a loss to TCP. This could happen even if the value of R is

chosen according to the theoretical value. To compensate,

we may have to choose a larger R.

The connection between W, R, and the losses that are

visible to TCP can be visualized as follows. Imagine a pro-
cess in which whenever the receiver receives an innovative

linear combination, one imaginary token is generated, and

whenever the sender slides the coding window forward by

one packet, one token is used up. If the sender slides the

coding window forward when there are no tokens left,

then this leads to a packet loss that will be visible to TCP.

The reason is, when this happens, the decoder will not be

able to see the very next unseen packet in order. Instead, it
will skip one packet in the sequence. This will make the

decoder generate duplicate ACKs requesting that lost (i.e.,

unseen) packet, thereby causing the sender to notice the

loss.

In this process, W corresponds to the initial number of

tokens available at the sender. Thus, when the difference

between the number of redundant packets (linear equa-

tions) received and the number of original packets
(unknowns) involved in the coding up to that point is

less than W, the losses will be masked from TCP. However,

if this difference exceeds W, the losses will no longer be

masked. The theoretically optimal value of W is not

known. However, we expect that the value should be a

function of the loss probability of the link. For the expe-

riment, we chose values of W based on trial and error.

Further research is needed in the future to fully under-
stand the tradeoffs involved in the choice of R and W.

3) Working With TCP-Reno: By adding enough redun-

dancy, the coding operation essentially converts the lossi-

ness of the channel into an extension of the RTT. This is

why our initial discussion in Section IV proposed the use of

the idea with TCP-Vegas, since TCP-Vegas controls the

congestion window in a smoother manner using RTT,
compared to the more abrupt loss-based variations of TCP-

Reno. However, the coding mechanism is also compatible

with TCP-Reno. The choice of W plays an important role in

ensuring this compatibility. The choice of W controls the

power of the underlying code, and hence determines when

losses are visible to TCP. As explained above, losses will be

masked from TCP as long as the number of received equa-

tions is no more than W short of the number of unknowns
involved in them. For compatibility with Reno, we need to

make sure that whenever the sending rate exceeds the link

capacity, the resulting queue drops are visible to TCP as

losses. A very large value of W is likely to mask even these

congestion losses, thereby temporarily giving TCP a large

estimate of capacity. This will eventually lead to a timeout,

and will affect throughput. The value of W should
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therefore be large enough to mask the link losses and small
enough to allow TCP to see the queue drops due to

congestion.

4) Computational Overhead: It is important to implement

the encoding and decoding operations efficiently, since

any time spent in these operations will affect the RTT

perceived by TCP. The finite field operations over GF(256)

have been optimized using the approach of [32], which
proposes the use of logarithms to multiply elements. Over

GF(256), each symbol is one byte long. Addition in

GF(256) can be implemented easily as a bitwise xor of the

two bytes.

The main computational overhead on the encoder side

is the formation of the random linear combinations of the

buffered packets. The management of the buffer also re-

quires some computation, but this is small compared to the
random linear coding, since the coding has to be done on

every byte of the packets. Typically, packets have a length L
of around 1500 bytes. For every linear combination that is

created, the coding operation involves LW multiplications

and LðW � 1Þ additions over GFð256Þ, where W is the

coding window size. Note that this has to be done R times

on average for every packet generated by TCP. Since the

coded packets are newly created, allocating memory for
them could also take time.

On the decoder side, the main operation is the Gauss–

Jordan elimination. To identify whether an incoming

linear combination is innovative, we need to perform

Gauss–Jordan elimination only on the decoding matrix,

and not on the coded packet. If it is innovative, then we

perform the row transformation operations of Gauss–

Jordan elimination on the coded packet as well. This re-
quires OðLWÞmultiplications and additions to zero out the

pivot columns in the newly added row. The complexity of

the next step of zeroing out the newly formed pivot column

in the existing rows of the decoding matrix varies depend-

ing on the current size and structure of the matrix. Upon

decoding a new packet, it needs to be packaged as a TCP

packet and delivered to the receiver. Since this requires

allocating space for a new packet, this could also be ex-
pensive in terms of time.

As we will see in Section VI-C, the benefits brought by

the erasure correction begin to outweigh the overhead of

the computation and coding header for loss rates of about

3%. This could be improved further by more efficient

implementation of the encoding and decoding operations.

5) Interface With TCP: An important point to note is that
the introduction of the new network coding layer does not
require any change in the basic features of TCP. As described

above, the network coding layer accepts TCP packets from

the sender TCP and in return delivers regular TCP ACKs

back to the sender TCP. On the receiver side, the decoder

delivers regular TCP packets to the receiver TCP and

accepts regular TCP ACKs. Therefore, neither the TCP

sender nor the TCP receiver sees any difference looking
downwards in the protocol stack. The main change intro-

duced by the protocol is that the TCP packets from the

sender are transformed by the encoder by the network

coding process. This transformation is removed by the

decoder, making it invisible to the TCP receiver. On the

return path, the TCP receiver’s ACKs are suppressed, and

instead the decoder generates regular TCP ACKs that are

delivered to the sender. This interface allows the possibi-
lity that regular TCP sender and receiver end hosts can

communicate through a wireless network even if they are

located beyond the wireless hosts.

While the basic features of the TCP protocol see no

change, other special features of TCP that make use of the

ACKs in ways other than to report the next required byte

sequence number will need to be handled carefully. For

instance, implementing the timestamp option in the pre-
sence of network coding across packets may require some

thought. With TCP/NC, the receiver may send an ACK for

a packet even before it is decoded. Thus, the receiver may

not have access to the timestamp of the packet when it

sends the ACK. Similarly, the TCP checksum field has to

be dealt with carefully. Since a TCP packet is acknowl-

edged even before it is decoded, its checksum cannot be

tested before acknowledging. One solution is to imple-
ment a separate checksum at the network coding layer to

detect errors. In the same way, the various other TCP

options that are available have to be implemented with

care to ensure that they are not affected by the premature

ACKs.

VI. PERFORMANCE RESULTS

In this section, we present simulation results and experi-

mental results aimed at establishing the fairness properties

and the throughput benefits of our new protocol. The

simulations are based on TCP-Vegas. The experimental

results use the TCP-Reno based implementation described

in Section V.

A. Fairness of the Protocol
First, we study the fairness property of our algorithm

through simulations.

1) Simulation Setup: The protocol described above is

simulated using the network simulator (ns-2) [33]. The

topology for the simulations is a tandem network consisting

of four hops (hence, five nodes), shown in Fig. 10. The

source and sink nodes are at opposite ends of the chain.
Two FTP applications want to communicate from the

source to the sink. There is no limit on the file size. They

emit packets continuously until the end of the simulation.

They either use TCP without coding or TCP with network

coding (denoted TCP/NC). In this simulation, intermediate

nodes do not re-encode packets. All the links have a

bandwidth of 1 Mb/s, and a propagation delay of 100 ms.
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The buffer size on the links is set at 200. The TCP receive

window size is set at 100 packets, and the packet size is

1000 bytes. The Vegas parameters are chosen to be � ¼ 28,

� ¼ 30, � ¼ 2 (see [30] for details of Vegas).

2) Fairness and CompatibilityVSimulation Results: By

fairness, we mean that if two similar flows compete for the

same link, they must receive an approximately equal share
of the link bandwidth. In addition, this must not depend on

the order in which the flows join the network. As men-

tioned earlier, we use TCP-Vegas for the simulations. The

fairness of TCP-Vegas is a well-studied problem. It is

known that depending on the values chosen for the � and

� parameters, TCP-Vegas could be unfair to an existing

connection when a new connection enters the bottleneck

link [34], [35]. Several solutions have been presented to
this problem in the literature (for example, see [36] and

references therein). In our simulations, we first pick

values of � and � that allow fair sharing of bandwidth

when two TCP flows without our modification compete

with each other, in order to evaluate the effect of our

modification on fairness. With the same � and �, we

consider two cases:

Case 1: the situation where a network coded TCP
flow competes with another flow running

TCP without coding;

Case 2: the situation where two coded TCP flows

compete with each other.

In both cases, the loss rate is set to 0% and the redun-

dancy parameter is set to 1 for a fair comparison. In the

first case, the TCP flow starts first at t ¼ 0.5 s and the

TCP/NC flow starts at 1000 s. The system is simulated
for 2000 s. The current throughput is calculated at inter-

vals of 2.5 s. The evolution of the throughput over time is

shown in Fig. 11. The figure shows that the effect of intro-

ducing the coding layer does not affect fairness. We see

that after the second flow starts, the bandwidth gets redis-

tributed fairly.

For case 2, the simulation is repeated with the same

starting times, but this time both flows are TCP/NC
flows. The plot for this case is essentially identical to

Fig. 11 (and hence is not shown here) because in the

absence of losses, TCP/NC behaves identically to TCP if

we ignore the effects of field size. Thus, coding can co-

exist with TCP in the absence of losses, without affecting

fairness.

B. Effectiveness of the Protocol
We now show that the new protocol indeed achieves a

high throughput, especially in the presence of losses. We

first describe simulation results comparing the protocol’s

performance with that of TCP in Section VI-B1.

1) Throughput of the New ProtocolVSimulation Results:
The simulation setup is identical to that used in the fair-

ness simulations (see Section VI-A1).
We first study the effect of the redundancy parameter

on the throughput of TCP/NC for a fixed loss rate of 5%.

By loss rate, we mean the probability of a packet getting

lost on each link. Both packets in the forward direction as

well as ACKs in the reverse direction are subject to these

losses. No re-encoding is allowed at the intermediate

nodes. Hence, the overall probability of packet loss across

four hops is given by 1� ð1� 0:05Þ4, which is roughly
19%. Hence, the capacity is roughly 0.81 Mb/s, which

when split fairly gives 0.405 Mb/s per flow. The simulation

time is 10 000 s.

We allow two TCP/NC flows to compete on this net-

work, both starting at 0.5 s. Their redundancy parameter is

varied between 1 and 1.5. The theoretically optimum value

is approximately 1=ð1� 0:19Þ ’ 1:23. Fig. 12 shows the

plot of the throughput for the two flows, as a function of
the redundancy parameter R. It is clear from the plot that R
plays an important role in TCP/NC. We can see that the

throughput peaks around R ¼ 1:25. The peak throughput

achieved is 0.397 Mb/s, which is indeed close to the capa-

city that we calculated above. In the same situation, when

two TCP flows compete for the network, the two flows see

a throughput of 0.0062 and 0.0072 Mb/s, respectively.

Thus, with the correct choice of R, the throughput for the
flows in the TCP/NC case is very high compared to the

TCP case. In fact, even with R ¼ 1, TCP/NC achieves about

0.011 Mb/s for each flow improving on TCP by almost a

factor of 2.

Fig. 11. Fairness and compatibilityVone TCP/NC and one TCP flow.

Fig. 10. Simulation topology.
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Next, we study the variation of throughput with loss

rate for both TCP and TCP/NC. The simulation parameters

are all the same as above. The loss rate of all links is kept at

the same value, and this is varied from 0% to 20%. We
compare two scenarios: two TCP flows competing with

each other and two TCP/NC flows competing with each

other. For the TCP/NC case, we set the redundancy pa-

rameter at the optimum value corresponding to each loss

rate. Fig. 13 shows that TCP’s throughput falls rapidly as

losses increase. However, TCP/NC is very robust to losses

and reaches a throughput that is close to capacity. (If p is

the loss rate on each link, then the capacity is ð1� pÞ4,
which must then be split equally.)

Fig. 14 shows the instantaneous throughput in a 642-s-

long simulation of a tandem network with three hops (i.e.,

four nodes), where erasure probabilities vary with time in

some specified manner. The third hop is, on average, the

most erasure-prone link. The plots are shown for

traditional TCP, TCP/NC with coding only at the source,

and TCP/NC with re-encoding at node 3 (just before the

worst link). The operation of the re-encoding node is very

similar to that of the sourceVit collects incoming linear

combinations in a buffer, and transmits, on average, Rint

random linear combinations of the buffer contents for

every incoming packet. The R of the sender is set at 1.8,

and the Rint of node 3 is set at 1.5 for the case when it re-

encodes. The average throughput is shown in the table. A

considerable improvement is seen due to the coding,

which is further enhanced by allowing intermediate node

re-encoding. This plot thus shows that our scheme is also

suited to systems with coding inside the network.

Remark 2: These simulations are meant to be a prelim-

inary study of our algorithm’s performance. Specifically,

the following points must be noted.

/ Link layer retransmission is not considered for

either TCP or TCP/NC. If allowed, this could im-

prove the performance of TCP. However, as men-

tioned earlier, the retransmission approach does
not extend to more general multipath routing

solutions, whereas coding is better suited to such

scenarios.

/ The throughput values in the simulation results do

not account for the overhead associated with the

network coding headers. The main overhead is in

conveying the coding coefficients and the con-

tents of the coding window. If the source and the
sink share a pseudorandom number generator,

then the coding coefficients can be conveyed su-

ccinctly by sending the current state of the gene-

rator. However, if intermediate nodes perform

re-encoding of packets, then this idea may not work

unless the intermediate nodes also use the sameFig. 13. Throughput versus loss rate for TCP and TCP/NC.

Fig. 14. Throughput with and without intermediate node re-encoding.

Fig. 12. Throughput versus redundancy for TCP/NC.
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pseudorandom number generator. Also, the coding
window contents can be conveyed in an incremen-

tal manner to reduce the overhead.

/ The loss in throughput due to the finiteness of the

field has not been modeled in the simulations. A

small field might cause received linear combina-

tions to be noninnovative, or might cause packets

to be seen out of order, resulting in duplicate ACKs.

However, the probability that such problems per-
sist for a long time falls rapidly with the field size.

We believe that for practical choices of field size,

these issues will only cause transient effects that

will not have a significant impact on performance.

These effects remain to be quantified exactly.

/ Finally, the decoding delay associated with the

network coding operation has not been studied. We

intend to focus on this aspect in experiments in the
future. A thorough experimental evaluation of all

these aspects of the algorithm, on a more general

topology, is part of future work.

C. Experimental Results
We test the protocol on a TCP-Reno flow running over

a single-hop wireless link. The transmitter and the receiver

are Linux machines equipped with a wireless antenna. The
experiment is performed over 802.11a with a bit rate of

6 Mb/s and a maximum of 5 link layer retransmission

attempts. RTS-CTS is disabled.

Our implementation uses the Click modular router

[37]. In order to control the parameters of the setup, we

use the predefined elements of Click. Since the two

machines are physically close to each other, there are very

few losses on the wireless link. Instead, we artificially in-
duce packet losses using the RandomSample element. Note

that these packet losses are introduced before the wireless

link. Hence, they will not be recovered by the link layer

retransmissions, and have to be corrected by the layer

above IP. The round-trip delay is empirically observed to

be in the range of a few tens of milliseconds. The encoder

and decoder queue sizes are set to 100 packets, and the size

of the bottleneck queue just in front of the wireless link is
set to five packets. In our setup, the loss inducing element

is placed before the bottleneck queue.

The quantity measured during the experiment is the

goodput over a 20-s-long TCP session. The goodput is

measured using iperf [38]. Each point in the plots shown is

averaged over four or more iterations of such sessions,

depending on the variability. Occasionally, when the itera-

tion does not terminate and the connection times out, the
corresponding iteration is neglected in the average, for

both TCP and TCP/NC. This happens around 2% of the

time, and is observed to be because of an unusually long

burst of losses in the forward or return path. In the com-

parison, neither TCP nor TCP/NC uses selective ACKs.

TCP uses delayed ACKs. However, we have not imple-

mented delayed ACKs in TCP/NC at this point.

Fig. 16 shows the variation of the goodput with the
redundancy factor R for a loss rate of 10%, with a fixed

coding window size of W ¼ 3. The theoretically optimal

value of R for this loss rate is close to 1.11 (1/0.9 to be

exact). However, from the experiment, we find that the

best goodput is achieved for an R of around 1.25. The

discrepancy is possibly because of the type of coding

scheme employed. Our coding scheme transmits a linear

combination of only the W most recent arrivals, in order to
save packet header space. This restriction reduces the

strength of the code for the same value of R. In general, the

value of R and W must be chosen carefully to get the best

benefit of the coding operation. As mentioned earlier,

another reason for the discrepancy is the use of TCP-Reno.

Fig. 17 plots the variation of goodput with the size of

the coding window size W . The loss rate for this plot is 5%,

with the redundancy factor fixed at 1.06. We see that the
best coding window size is 2. Note that a coding window

size of W ¼ 1 corresponds to a repetition code that simply

transmits every packet 1.06 times on average. In compar-

ison, a simple sliding-window code with W ¼ 2 brings a

substantial gain in throughput by making the added

redundancy more useful. However, going beyond 2 re-

duces the goodput because a large value of W can mislead

TCP by masking too many losses, which prevents TCP from
reacting to congestion in a timely manner and leads to

timeouts. We find that the best value of W for our setup is

usually 2 for a loss rate up to around 5%, and is 3 for higher

loss rates up to 25%. Besides the loss rate, the value of

W could also depend on other factors such as the RTT of

the path.

Fig. 15 shows the goodput as a function of the packet

loss rate. For each loss rate, the values of R and W have
been chosen by trial and error to be the one that maximizes

the goodput. We see that in the lossless case, TCP performs

better than TCP/NC. This could be because of the

Fig. 15. Goodput versus loss rate.
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computational overhead that is introduced by the coding

and decoding operations, and also the coding header over-

head. However, as the loss rate increases, the benefits of
coding begin to outweigh the overhead. The goodput of

TCP/NC is therefore higher than TCP. Coding allows

losses to be masked from TCP, and hence the fall in good-

put is more gradual with coding than without. The perfor-

mance can be improved further by improving the

efficiency of the computation.

VII. IMPLICATIONS FOR
WIRELESS NETWORKING

In considering the potential benefits of our TCP-

compatible network coding solution, we focus on the

area of wireless links. We now explain the implications of
this new protocol for improving throughput in wireless

networks.

TCP was originally developed for wired networks and

was designed to interpret each packet loss as a congestion

signal. Since wired networks have very little packet loss on

the links and the predominant source of loss is buffer

overflow due to congestion, TCP’s approach works well. In

contrast, wireless networks are characterized by packet
loss on the link and intermittent connectivity due to

fading. It is well known that TCP is not well suited for

such lossy links. The primary reason is that it wrongly

assumes the cause of link losses to be congestion, and

reduces its transmission rate unnecessarily, leading to low

throughput.

Adapting TCP for wireless scenarios is a very well-

studied problem (see [39] and references therein for a
survey). The general approach has been to mask losses

from TCP using link layer retransmission [40]. However, it

has been noted in the literature [41], [42] that the inter-

action between link layer retransmission and TCP’s re-

transmission can be complicated and that performance

may suffer due to independent retransmission protocols at

different layers. More importantly, if we want to exploit

the broadcast nature of the wireless medium, link layer
retransmission may not be the best approach.

A. Intermediate Node Re-Encoding
Our scheme does not rely on the link layer for recov-

ering losses. Instead, we use an erasure correction scheme

based on random linear codes across packets. Coding

across packets is a natural way to handle losses. The inter-

face of TCP with network coding that we propose in this
paper can be viewed as a generalization of previous work

combining TCP with forward erasure correction (FEC)

schemes [43]. As opposed to fountain codes and FEC that

are typically used for end-to-end coding, our protocol also

allows intermediate nodes in the network to perform re-

encoding of data. It is thus more general than end-to-end

erasure correction over a single path.

Intermediate node re-encoding is an important feature.
If nodes are allowed to re-encode data, then we can obtain

significant benefits in throughput in multipath and multi-

cast scenarios, and also in a single path unicast scenario

with multiple lossy hops. Besides, it gives us the flexibility

to add redundancy for erasure correction only where

necessary, i.e., before the lossy link. An end-to-end coding

approach would congest other parts of the network where

the redundancy is not needed.
It is important to note that our scheme respects the

end-to-end philosophy of TCPVit would work even if

coding operations were performed only at the end hosts.

Having said that, if some nodes inside the network also

perform network coding, our solution naturally gener-

alizes to such scenarios as well. The queuing analysis in

Section IV-D considers such a situation.
Fig. 17. Goodput versus coding window size for a 5% loss rate

and R ¼ 1:06.

Fig. 16. Goodput versus redundancy factor for a 10% loss rate

and W ¼ 3.
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B. Opportunistic Routing and TCP
There has been a growing interest in approaches that

make active use of the intrinsic broadcast nature of the

wireless medium. In the technique known as opportunistic

routing [44], a node broadcasts its packet, and if one of its

neighbors receives the packet, that node will forward the

packet downstream, thereby obtaining a diversity benefit.

If more than one of the neighbors receive the packet, they

will have to coordinate and decide who will forward the
packet.

The MORE protocol [17] proposed the use of intraflow

network coding in combination with opportunistic rout-

ing. The random linear mixing (coding) of incoming pa-

ckets at a node before forwarding them downstream was

shown to reduce the coordination overhead associated

with opportunistic routing. Another advantage is that

the coding operation can be easily tuned to add redun-
dancy to the packet stream to combat erasures. Such

schemes can potentially achieve capacity for a multicast

connection [5].

However, if we allow a TCP flow to run over an oppor-

tunistic routing based system like ExOR [44] or MORE,

two issues arise: batching and reordering. Typical imple-

mentations use batches of packets instead of sliding win-

dows. ExOR uses batching to reduce the coordination
overhead, but as mentioned in [44], this interacts poorly

with TCP’s window mechanism. MORE uses batching to

perform the coding operation. As discussed earlier, if the

receiver acknowledges packets only when an entire batch

has been successfully decoded, then the decoding delay

will interfere with TCP. Since TCP performance heavily

relies on the timely return of ACKs, such a delay in the

ACKs would affect the RTT calculation and thereby reduce
the throughput.

The second issue with opportunistic routing is that it

could lead to reordering of packets, since different packets

could take different paths to the destination. Reordering is

known to interact badly with TCP, as it can cause duplicate

ACKs, and TCP interprets duplicate ACKs as a sign of

congestion.

Our work addresses both these issues. Since the re-
ceiver does not have to wait to decode a packet, but can

send a TCP ACK for every degree of freedom received, the

batching problem is solved.

As for the reordering issue, we have shown (Lemma 1)

that in our scheme, if the linear combination happens over

a large enough finite field, then any incoming random

linear combination will, with high probability, generate a

TCP ACK for the very next unacknowledged packet in
order. This is because the random combinations do not

have any inherent ordering. The argument holds true even

when multiple paths deliver the random linear combina-

tions. Hence, the use of random linear coding with the

ACK of degrees of freedom can potentially address the TCP
reordering problem for multipath opportunistic routing
schemes.

Our interface enhancing TCP with network coding
yields a new approach to implementing TCP over wireless

networks, and it is here where the benefits of our solution

are most dramatic.

VIII . CONCLUSION AND FUTURE WORK

In this work, we propose a new approach to congestion

control on lossy links based on the idea of random linear
network coding. We introduce a new ACK mechanism that

plays a key role in incorporating coding into the sliding-

window mechanism of TCP. From an implementation

perspective, we introduce a new network coding layer be-

tween the transport and network layers on both the source

and receiver sides. This means, our changes can be easily

deployed in an existing system. Our simulations show that

the proposed changes lead to large throughput gains over
TCP in lossy links, even with coding only at the source. We

demonstrate the practicality of our proposal by imple-

menting it in a real-world experimental setup with TCP-

Reno. Significant gains in goodput are seen in the

experiments.

We view this work as a first step in taking the theory of

network coding to practice. The ideas proposed in this

paper give rise to several open questions for future
research.

1) Extensions to Multipath and Multicast: The scheme has

implications for running TCP over wireless networks, in

particular, in the context of lossy multipath opportunistic

routing scenarios. It is also of interest to extend this ap-

proach to other settings such as network-coding-based

multipath-TCP for point-to-point connections, as well as
network-coding-based multicast connections over a gen-

eral network. The goal is to present the application layer

with the familiar TCP interface while still exploiting the

multipath or multicast capabilities of the network. We

believe that the proposed ideas and the implementation

will lead to the practical realization of this goal and will

bring out the theoretically promised benefits of network

coding in such scenarios. The idea of coding across pa-
ckets, combined with our new ACK mechanism, will allow

a single TCP state machine to manage the use of several

paths. However, further work is needed to ensure that the

different characteristics of the paths to the receiver (in

case of multipath) or to multiple receivers (in case of

multicast) are taken into account correctly by the

congestion control algorithm.

2) Re-Encoding Packets at Intermediate Nodes: A salient

feature of our proposal is that it is simultaneously com-

patible with the case where only end hosts perform coding

(thereby preserving the end-to-end philosophy of TCP),

and the case where intermediate nodes perform network

coding. Theory suggests that a lot can be gained by allow-

ing intermediate nodes to code as well. Our scheme
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naturally generalizes to such situations. The ability to code
inside the network is important for multicast connections.

Even for a point-to-point connection, the ability to re-

encode at an intermediate node offers the flexibility of

adding redundancy where it is needed, i.e., just before the

lossy link. The practical aspects of implementing re-

encoding need to be studied further.

3) Automatic Tuning of TCP/NC Parameters: More work is
needed in the future for fully understanding the role

played by the various parameters of the new protocol, such

as the redundancy factor R and the coding window size W .

To achieve high throughputs in a fair manner, the values

of R and W have to be carefully adapted based on the

characteristics of the underlying link. Ideally, the choice
of these parameters should be automated. For instance, the

correct values could be learned dynamically based on

measurement of the link characteristics such as the link

loss rate, bandwidth, and delay. In addition, the parameters

have to be extended to cover the case of multipath and

multicast scenarios as well. h
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